您好、欢迎来到现金彩票网!
当前位置:秒速时时彩开奖 > 算法分析 >

SUSAN边缘检测算法性能分析与比较

发布时间:2019-06-03 23:43 来源:未知 编辑:admin

  边缘是图像最基本的特征,是图像分割的第一步。经典的边缘检测方法如:Roberts,Sobel,Prewitt,Kirsch,Laplace等方法,基本都是对原始图像中象素的小邻域构造边缘检测算子,进行一阶微分或二阶微分运算,求得梯度最大值或二阶导数的过零点,最后选取适当的阀值提取边界。由于这些算法涉及梯度的运算,因此均存在对噪声敏感、计算量大等缺点。在实践中,发现SUSAN算法只基于对周边象素的灰度比较,完全不涉及梯度的运算,因此其抗噪声能力很强,运算量也比较小。并将SUSAN算法用于多类图像的边缘检测中,实验证明该算法非常适合含噪图像的边缘检测。

  如图1所示,用一个圆形模板在图像上移动,若模板内象素的灰度与模板中心象素(称为:核Nucleus)灰度的差值小于一定阀值,则认为该点与核具有相同(或相近)的灰度,由满足这样条件的象素组成的区域称为USAN(Univalue Segment Assimilating Nucleus)。

  当圆形模板完全处在图像或背景中时,USAN区域面积最大(如图1中的a和b);当模板移向图像边缘时,USAN区域逐渐变小(如图1中c);当模板中心处于边缘时,USAN区域很小(如图1中的d);当模板中心处于角点时,USAN区域最小(如图1中的e)。可以看出,在边缘处象素的USAN值都小于或等于其最大值的一半。因此,计算图像中每一个象素的USAN值,通过设定一个USAN阀值,查找小于阀值的象素点,即可确定为边缘点[1]。

  对整幅图像中的所有象素,用圆形模板进行扫描,比较模板内每一象素与中心象素的灰度值,通过与给定的阀值比较,来判别该象素是否属于USAN区域,如下式:

  式(1)中c(r,r0)为模板内属于USAN区域的象素的判别函数;I(r0)是模板中心象素(核)的灰度值;I(r)为模板内其他任意象素的灰度值;t是灰度差门限。

  式(2)中D(r0)为以r0为中心的圆形模板区域。得到每个象素的USAN值n(r0)以后,再与预先设定得门限g进行比较,当n(r0)

  

  由于图像的数字化,实际上无法实现真正的圆形模板,所以都是采用近似圆代替。但是模板较小时,如果门限选取不恰当,可能会发生边缘点漏检的情况。模板也不宜取得太大,否则会增大运算量大,通常可取5×5或37象素模板[1]。本文实验中均采用的是5×5的模板。

  门限g决定了边缘点的USAN区域的最大值,即只要图像中的象素的USAN值小于g,该点就被判定为边缘点。g过大时,边缘点附近的象素可能作为边缘被提取出

  为模板的最大USAN值),可以较好地提取出初始边缘点。如果要达到单象素的精度,还需进一步剔除多余象素。

  门限t表示所能检测边缘点的最小对比度,也是能忽略的噪声的最大容限。t越小,可从对比度越低的图像中提取特征。因此对于不同对比度和噪声情况的图像,应取不同的t值[2]。

  无论对直线,还是曲线边缘,SUSAN算法基本上可以检测出所有的边缘,检测结果较好。虽然实验中没有达到一个象素的精度,但这主要是因为对边缘的两侧都应用了SUSAN算法,对具体的实际应用,可以对背景不再应用SUSAN算法,这样不但可以达到细化边缘的目的,而且运算量也大大减少。

http://homeschoolwwh.com/suanfafenxi/179.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有